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Abstract

Hematogenous dissemination of Mycobacterium tuberculosis (M. tb) occurs during both primary and reactivated tuberculosis
(TB). Although hematogenous dissemination occurs in non-HIV TB patients, in ,80% of these patients, TB manifests
exclusively as pulmonary disease. In contrast, extrapulmonary, disseminated, and/or miliary TB is seen in 60–70% of HIV-
infected TB patients, suggesting that hematogenous dissemination is likely more common in HIV+ patients. To understand
M. tb adaptation to the blood environment during bacteremia, we have studied the transcriptome of M. tb replicating in
human whole blood. To investigate if M. tb discriminates between the hematogenous environments of immunocompetent
and immunodeficient individuals, we compared the M. tb transcriptional profiles during replication in blood from HIV- and
HIV+ donors. Our results demonstrate that M. tb survives and replicates in blood from both HIV- and HIV+ donors and
enhances its virulence/pathogenic potential in the hematogenous environment. The M. tb blood-specific transcriptome
reflects suppression of dormancy, induction of cell-wall remodeling, alteration in mode of iron acquisition, potential evasion
of immune surveillance, and enhanced expression of important virulence factors that drive active M. tb infection and
dissemination. These changes are accentuated during bacterial replication in blood from HIV+ patients. Furthermore, the
expression of ESAT-6, which participates in dissemination of M. tb from the lungs, is upregulated in M. tb growing in blood,
especially during growth in blood from HIV+ patients. Preliminary experiments also demonstrate that ESAT-6 promotes HIV
replication in U1 cells. These studies provide evidence, for the first time, that during bacteremia, M. tb can adapt to the
blood environment by modifying its transcriptome in a manner indicative of an enhanced-virulence phenotype that favors
active infection. Additionally, transcriptional modifications in HIV+ blood may further accentuate M. tb virulence and drive
both M. tb and HIV infection.
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Introduction

Infection with M. tuberculosis (M. tb) is initiated by the few bacilli

in a droplet that are inhaled into the alveolus, which results either

in establishment of infection and progression to primary TB or, by

4–5 weeks post-infection, elicitation of immune responses that

control bacterial replication and result in latent TB. Studies in

animal models have demonstrated hematogenous dissemination of

M. tb from the lungs to various organs, including lymph nodes,

spleen, liver, pancreas, adrenal, and heart, as well as reseeding of

the lung, during primary infection [1,2,3]. Studies performed in

the pre-ATT (anti TB treatment) era demonstrated hematogenous

dissemination of M. tb in a majority of pediatric cases of primary

TB [4]. Viable M. tb have been demonstrated in lungs, liver,

spleen and kidneys of healthy individuals who died of causes

unrelated to TB, in a TB endemic setting [5]. This again provides

evidence of hematogenous dissemination of M. tb during primary

infection resulting in latent TB [5]. Bacteremia in TB patients with

pulmonary TB has been demonstrated for several decades [4,6,7].

Evidence for disseminated M. tb in patients who reactivated their

latent infection also exists [8]. Thus, bacteremia and hematoge-

nous dissemination of M. tb is an important component of the

natural course of establishment of infection and progression to

both primary and reactivated TB.

TB is one of the most common infections in HIV-infected

(HIV+) individuals in TB endemic countries, where 60–70% of the

HIV+ patients develop TB [9]. Co-infected individuals are at a

,20–40 fold higher risk for TB [10], and manifestation of TB is

independent of CD4+ T cell status and peripheral viral load

[11,12,13,14,15]. Extrapulmonary TB (EPTB), disseminated TB
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and miliary TB occurs in over 50% of the HIV+ TB patients

[16,17,18,19,20]. M. tb bacteremia is common in disseminated

TB, and has been increasingly reported in TB endemic regions

[21,22,23,24,25,26].

Despite the importance of hematogenous dissemination during

for establishment of latent TB, or progression to active disease,

how M. tb adapts to the blood environment to remains to be

investigated. Other pathogens such as Neisseria meningitidis, Listeria

monocytogenes, and Group A and Group B Streptococcus modulate

their transcriptional profiles during bacteremia [27,28,29,30].

Considering the exquisite sensitivity of M. tb to its environment

and its ability to adapt to different environments, it is likely that M.

tb also modulates its transcriptome during bacteremia. Transcrip-

tome changes have been described during adaptation of M. tb to

environments that may mimic in vivo conditions within the

granuloma or the phagosome [31,32,33,34,35,36]. M. tb also

modifies its transcriptional profile during adaptation to different

intracellular environments, [37,38]. Interestingly, differences in M.

tb transcriptomes during infection of immunocompetent (BALB/c)

and immunocompromised (SCID) mice has also been reported

[39]. Differential gene expression has been reported in bacteria

from different portions of the same granuloma, and in non-

granulomatous regions of the lung [40]. Thus, M. tb may also

discriminate between HIV- healthy and HIV+ immunodeficient

individuals during bacteremia.

We have investigated the transcriptome of M. tb replicating in

human whole blood to investigate the adaptation during

bacteremia. To determine how M. tb discriminates between the

blood environment of immunocompetent and immunodeficient

individuals, we have compared the transcriptional profile during

growth and replication in blood from HIV- and HIV+ donors.

Our results demonstrate that M. tb not only survives and replicates

in blood from both HIV- and HIV+ donors, it also enhances its

virulence/pathogenic potential in blood, more emphatically in

blood from HIV+ patients. The blood-specific transcriptome

reflects down-regulation of genes required for survival in

dormancy, induction of cell-wall remodeling, alteration in mode

of iron acquisition, potential evasion of immune surveillance, and

enhancement in the expression of important virulence factors that

drive active M. tb infection and dissemination. Importantly, these

changes are accentuated during replication in blood from HIV+
patients. Our results also demonstrate that esat6, the gene encoding

ESAT-6, which plays an important role in dissemination of M. tb

from the lungs, is upregulated in M. tb growing in blood [41,42],

especially in bacteria growing in HIV+ patient blood. Preliminary

experiments suggest that purified recombinant ESAT-6 promotes

HIV replication in U1 cells and could serve to directly accelerate

the progression of HIV-infection.

Results and Discussion

Transcriptome analysis of M. tb in whole blood from HIV-
and HIV+ humans

To investigate the transcriptome of M. tb in the hematogenous

environment, we first evaluated the ability of M. tb H37Rv to

survive and replicate in fresh whole blood from 10 HIV- and 15

HIV+ donors (Figure 1; TABLE S1). Significant bacterial growth

was observed within 96 hr post-inoculation in blood from both

HIV- and HIV+ donors (p values = 0.0020 and ,0.0001,

respectively). There was no difference in bacterial replication in

the two blood environments (p value = 0.2117) Fig 1A). At

96 hours post- inoculation, there was 3–46 fold (mean 21 fold)

increase in CFU in the blood from the 10 HIV- donors (Figure 1B).

The trend of M. tb replication was higher in blood from HIV+

donors (3–139 fold increase; mean = 39 fold) but the difference was

not statistically significant (Figure 1B). This is in contrast to earlier

studies where replication of BCG in whole blood from HIV- and

HIV+ children was studied, and the bacterial replication was

significantly higher in the latter environment. Whether the

difference in these results is due to use of BCG compared to

H37Rv, or differences in the pediatric and adult hematological

environment is not known [43]. While M. tb replication in 7H9

broth over 96 hr has been demonstrated in a number of previously

published studies, e.g., [44,45], the dilution of blood samples with

glutamine- and heparin- supplemented RPMI is unlikely to

promote M. tb replication since M. tb H37Rv failed to grow in

the medium alone (data not shown). Moreover, the same dilution

media was used in both HIV- and HIV+ blood cultures.

Following confirmation that human blood from both HIV- and

HIV+ donors supports bacterial survival and replication ex vivo

(Figure 1A), the transcriptional profile of M. tb replicating in blood

from 6 HIV- individuals and 6 HIV+ individuals was investigated

with bacteria grown in 7H9 bacterial media (Figure 2). (CD4+ T

cell numbers and viral load for the 6 HIV+ individuals is provided

in TABLE S1).

Analysis of the transcriptional profile of M. tb during replication

in blood from HIV- donors revealed that 91 genes were

upregulated and 60 were down-regulated (Figure 2). In contrast,

in bacteria replicating in blood from HIV+ patients, 157 genes

were upregulated and 136 down-regulated (Figure 2). Thus, a

more extensive transcriptional adaptation was observed in M. tb

replicating in the HIV+ blood environment. Of the differentially

expressed genes, 41 were upregulated and 17 down-regulated only

in blood from HIV- donors (Figures 2 and S1) and 107

upregulated and 93 down-regulated only in blood from HIV+
patients (Figures 2 and S2). Fifty upregulated and 43 down-

regulated genes overlapped in the two blood environments,

indicating a ‘‘blood-specific’’ transcriptional profile (Figures 2

and S3). Although the presence of heparin in the blood could

contribute to the differential expression of some M. tb genes, these

would be common for both the blood environments. Thus, M. tb

can adapt to the blood environment and can also distinguish the

blood environments of HIV- and HIV+ donors (see TABLE S2

and TABLE S3 for lists of all upregulated and down-regulated M.

tb genes in whole blood from HIV- and HIV+ donors,

respectively). Unsupervised hierarchical clustergrams for all

upregulated (Figure S4A) and down-regulated (Figure S4B) genes

produced 10 clusters for the former and 6 clusters for the latter

genes. As expected, M. tb genes differentially expressed only in

blood from HIV- donors or from HIV+ patients predominantly

clustered separately from each other, while genes differentially

expressed in both environments were spread across clusters.

For further verification of the differences in transcriptional

profiles during replication in blood from HIV+ versus HIV-

donors, the log2 ratio profiles obtained from the blood/7H9

microarray analyses were statistically evaluated (see Materials and

Methods) and M. tb genes exhibiting a $2 fold difference between

the two environments identified (Figure 3). Based on this analysis,

58 genes were upregulated and 28 down-regulated during growth

in HIV+ patient blood compared to HIV- donor blood (Figure 3).

The similarities between the transcriptional profiles in HIV- and

HIV+ blood, as well as the accentuated regulation in blood from

HIV+ donors is evident in Figure 3.

Functional distribution of M. tb genes differentially
expressed in blood from HIV- and HIV+ donors

The M. tb genes differentially expressed in the blood environ-

ment were categorized based on up- and down-regulation, in

Transcriptional Profiling of M. tb in Human Blood
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HIV- or HIV+ blood environments or both, and by functional

category (http://tuberculist.epfl.ch/index.html; TABLE 1,

Figure 4A,B). All functional categories exhibited some degree of

differential regulation during replication in the blood (TABLE 1);

however, Hypergeometric Distribution and Fisher’s Exact testing

did not reveal any particular functional category as being

significantly enriched in blood from either HIV- or HIV+ donors

(data not shown). Assessment of the proportion of differentially

expressed genes in any particular functional category showed that

genes annotated in the ‘‘insertional sequences and phages’’

(16.3%), ‘‘PE/PPE’’ (15.5%) and ‘‘conserved hypotheticals’’

(9.7%) were the top three functional classes affected; the roles of

these classes of genes in M. tb are largely unknown. The next most

regulated functional categories were ‘‘cell-wall and cell-wall

processes’’ (8.7%), and ‘‘virulence, detoxification, adaptation’’

(8.4%). Slightly less regulated were ‘‘intermediary metabolism and

respiration’’ (7.4%), ‘‘regulatory proteins’’ (7.1%), and ‘‘lipid

metabolism’’ (7.0%), and the least regulated was the ‘‘information

pathways’’ (4.5%) category. Based on the percentage of genes

affected within a functional category, the most upregulated

categories (Figure 4A), aside from ‘‘insertional sequences and

phages’’, were ‘‘PE/PPE’’, ‘‘lipid metabolism’’ and ‘‘cell-wall

processes’’. Similarly, the most down-regulated categories

(Figure 4B) include ‘‘insertional sequences and phages’’ and

‘‘PE/PPE’’, as well as ‘‘virulence, detoxification, adaptation’’ and

‘‘conserved hypotheticals’’. Interestingly, in nearly all functional

categories, the numbers of genes differentially expressed (both

upregulated and down-regulated) were higher in M. tb replicating

in blood from HIV+ donors (Figure 4) emphasizing the more

extensive transcriptional adaptation of M. tb to the HIV+ blood

environment.

M. tb dormancy-related transcriptome is suppressed
during replication in whole blood

M. tb dormancy is characterized by a viable, low metabolic,

anaerobic, non-replicating state associated with latent tuberculosis

infection [46]. The M. tb DevR (DosR) regulon consists of ,50

genes induced during adaptation to multiple stressful environ-

ments, including hypoxia encountered within granulomas [35,47]

and reactive nitrogen intermediates derived from activated

macrophages [48]. Such stresses can lead to inhibition of aerobic

respiration, suppression of bacterial replication, and M. tb

transition into a dormant state, contributing to latency [46]. The

DevR (DosR) response contributes to survival of M. tb under these

stresses and in the dormant state [49]. Compared to broth-grown

bacteria, several DevR (DosR) regulon genes were down-regulated

in M. tb replicating in whole blood (Figure 5A). Thus, Rv1812c,

Rv1813c, and Rv2031c (hspX), all predicted to be in the DevR

(DosR) regulon, were down-regulated in blood obtained from both

HIV- and HIV+ donors; an 18 DevR (DosR) regulon genes were

down-regulated in bacteria growing only in the blood from HIV+
patients. Fisher’s Exact testing revealed significant enrichment of

this regulon among down-regulated genes during replication in

blood from HIV+ patients but not in blood from HIV- donors

(Figure 5A), and 11 of the 28 genes down-regulated by M. tb in

blood from HIV+ patients versus HIV- donors (Figure 3) belong to

the DevR (DosR) regulon. Since the same logarithmically broth-

grown M. tb reference RNA was used across all microarray

experiments, the extensive down-regulation of this regulon in

HIV+ blood is not an artifact of the reference RNA. The vast

majority of the differentially expressed DevR (DosR) regulon genes

(19/21) group in hierarchical Cluster #6 (Figure S4B), and of the

61 genes in this cluster, 53 are down-regulated in blood from

HIV+ patients only (Figure S4B).

In addition to the DevR (DosR) regulatory system, the MprAB

(mycobacterial persistence regulator two-component system) also

participates in the establishment and maintenance of ‘‘persistence’’

during dormant M. tb infection [50]. The virulence-associated

operon encoding Rv1812c and Rv1813c, regulated by DevR

(DosR) and down-regulated in the blood environment, is also

regulated by the MprAB regulatory system [51]. Rv0982, the gene

encoding the sensor kinase of the system, MprB, is down-regulated

in M. tb replicating in blood from both HIV- and HIV+ donors; in

addition, Rv0981, encoding the response-regulator, MprA, is

down-regulated only in blood from HIV+ patients. Finally,

Rv1009, the gene encoding probable resuscitation-promoting

factor RpfB, believed to promote the resuscitation and growth of

dormant, non-growing bacteria [52], is upregulated during growth

in blood from HIV+ patients. Together these results suggest that

the blood environment does not produce stresses that lead to

inhibition of M. tb growth and transition to dormancy, implying

permissiveness for active bacterial replication. Moreover, in

addition to preventing entrance into dormancy, the HIV+ patient

blood environment may also promote exit from the dormant state.

Stress responses of M. tb in the blood environment
Transcripts for genes involved in global stress responses, e.g.

genes encoding RelA, universal stress proteins, sigma factors etc.,

Figure 1. M. tb replication in whole blood from HIV- and HIV+ subjects. (A) Total (intra- and extra-cellular) M. tb CFU counts after 2 and 96 hr
in blood from 10 HIV- donors or in blood from 15 HIV+ patients. (Wilcoxon Mann-Whitney two-tailed analysis; P values#0.05 statistically significant)
(B) M. tb CFU fold change between 2 hr and 96 hr in blood from HIV- donors and HIV+ patients (same as in panel A). (Mann-Whitney two-tailed
analysis; P value,0.05 statistically significant).
doi:10.1371/journal.pone.0094939.g001
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were either unaffected or down-regulated during replication in

whole blood. However, transcripts for Rv2429 (ahpD), involved in

the M. tb oxidative stress response, were upregulated in blood from

both HIV- and HIV+ donors; Rv2428 (ahpC) and Rv0462 (lpd)

were additionally upregulated in the latter environment. AhpD has

mild hydroperoxidase activity, and also functions, in conjunction

with Lpd and Rv2215 (DlaT) to reduce AhpC, an alkyl

hydroperoxidase which detoxifies organic peroxides [53], hydro-

gen peroxide (H2O2) [54], and peroxynitrate [55], indicating the

bacterial requirement for this antioxidative/antinitrosative system

during replication in blood. AhpC expression is repressed in M. tb

during in vitro broth culture, in macrophages and in mouse lungs

and spleen by an unknown regulator [56]. The derepression of the

AhpC system, and the upregulation of aphD, lpd, and aphC in the

HIV+ patient blood without any changes in expression of the katG

gene suggests that M. tb encounters source(s) of oxidative/

nitrosative stress that may not be neutralized by KatG.

Oxidative stress can be generated endogenously as free radical

byproducts of aerobic respiration accumulate [57], while exoge-

nous sources of oxidative stress can be experienced through

interactions with activated macrophages and neutrophils [57].

Thus, transcripts for Rv0249c, a succinic dehydrogenase involved

in the interconversion of fumarate and succinate, and Rv2200c

(ctaC), a probable transmembrane cytochrome C oxidase, both

involved in aerobic respiration were upregulated in blood from

both HIV- and HIV+ donors while genes involved in an

alternative respiratory pathway when aerobic respiration is

inhibited e.g. Rv0392c (ndhA), Rv1854c (ndh), Rv1162 (narH) and

Rv1164 (narI) were not affected. Another potential source of

oxidative stress for M. tb is an environment which is high in free

iron since iron drives the Fenton reaction which produces DNA

damaging active radicals [58]. As discussed below, based on the

transcriptional profile of M. tb in the blood environment, excess

free iron may be another plausible contributor to oxidative stress.

Another source of oxidative stress as well as nitrosative stress is

the intra-phagosomal environment of activated macrophages

where reactive species such as H2O2, superoxide (O2-), and nitric

oxide (NO) are encountered [59]. Of these, NO represses M. tb

replication and the aerobic pathway [48,60], and low concentra-

tions of NO are known to initiate a transcriptional response in M.

tb characterized by the upregulation of the DevR (DosR) regulon

[48]. As discussed above, several of the DevR (DosR) regulon

genes were down-regulated during replication in blood (Fig 5A).

Also, the DevR (DosR)-regulated Rv1737c and Rv1736c (narK2X)

operon was down-regulated in the HIV+ patient blood environ-

ment. Rv1737c (NarK2) is involved in nitrate reduction when M.

tb is in a senescent stationary phase, as well as the transport of

nitrate in and nitrite out of the bacterium. Only low levels of narX

and narK2 transcripts are detectable in aerobic M. tb cultures [61].

Furthermore, nitrate reduction is associated with the respiratory

switch under hypoxic conditions [62] and has also been shown to

protect against acidic and nitrogen species stresses, conditions

associated with the intra-macrophage environment [63]. The

down-regulation of narX and narK2 in HIV+ patient blood is

consistent with the favoring of M. tb replication and aerobic

respiration in this environment. Stresses which lead to misfolding

of bacterial proteins activate a ‘‘heat shock response’’ in M. tb

[34,47,64]. M. tb encodes eight heat shock proteins (HSPs) which

function as molecular chaperones [65]. Transcripts encoding

HSPs Rv0384c (clpB), Rv0251c (hsp), Rv2031c (hspX), and Rv0440

(groEL2) were down-regulated in blood from both HIV- and HIV+
donors, and transcripts for HSPs, Rv3418c (groES) and Rv0350

(dnaK) were additionally down-regulated in HIV+ patient blood

(Figure 5B). Moreover, Rv0352 (dnaJ) and Rv0351 (grpE), both

Figure 2. Differentially expressed M. tb genes in whole blood
from HIV- and HIV+ donors. Heat map denoting upregulated genes
in red and down-regulated genes in green in M. tb grown in blood from
6 HIV- donors (1-6) and 6 HIV+ patients (7-12) with dye flip (12 samples
for each condition, HIV- and HIV+). Genes are listed as upregulated or
down-regulated in blood from both HIV- and HIV+ donors or in HIV-
donor blood only or HIV+ patient blood only. HIV+ blood sample codes
(H#) are listed at the bottom for comparison with CD4+ T cell counts
and viral loads in Table S1.
doi:10.1371/journal.pone.0094939.g002
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encoding proteins that are stimulators of DnaK activity, were also

down-regulated in HIV+ patient blood (Fig 5B). The down-

regulation of genes encoding heat shock proteins as a group is

statistically significant by Fisher’s Exact test in both blood

environments (Figure 5B), and suggests lack of stresses affecting

protein folding during growth in blood. HSPs are also highly

immunogenic [66] and proinflammatory [67], and overexpression

of M. tb HSPs reduces bacterial survival in mice lungs due to

enhanced immune recognition [68]. Consequently, HSPs are

considered potentially useful in the development of vaccines and

Figure 3. Differential M. tb gene expression in blood from HIV+ patients versus HIV- donors. (A) Heat map of M. tb genes upregulated $2
fold during replication in blood from HIV+ patients (7–12) versus HIV- donors (1-6). (B) Heat map of M. tb genes down-regulated $2 fold during
replication in blood from HIV+ patients (7-12) versus HIV- donors (1-6).
doi:10.1371/journal.pone.0094939.g003
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immunotherapy against TB [69,70]. The dampening of the ‘‘heat

shock response’’ could indicate evasion of M. tb from the host

immune surveillance.

M. tb cell-wall remodeling
The M. tb cell-wall is a complex structure serving as the

interface of the host and the pathogen, and is important for M. tb

survival and virulence [71]. The transcriptome of M. tb growing in

whole blood suggests that significant M. tb cell-wall remodeling

occurs in this environment. Specifically, the phthiocerol dimyco-

cerosate (PDIM) and phenol glycolipid (PGL) synthesis pathway

genes were particularly represented amongst the upregulated cell-

wall synthesis genes and statistically enriched in blood from HIV+
patients (Figure 5C). PDIM and PGL are closely related surface-

exposed cell-wall components present only in pathogenic myco-

bacteria and have been associated with virulence in animal models

[72]. Thus, transcripts for Rv2930 (fadD26), Rv2939 (papA5) and

Rv2953, all involved in PDIM biosynthesis, were upregulated in

blood from both HIV- and HIV+ donors. In addition, transcripts

for Rv2936 (drrA) and Rv2938 (drrC), both of which are involved in

the active transport of PDIM across the M. tb membrane were also

upregulated in the HIV+ patient blood, as was Rv2940c (mas)

which is involved in the elongation of mycocerosyl lipids,

components of both PDIM and PGL. Together these results

Table 1. Numbers of M. tb genes differentially expressed in blood from HIV- and/or HIV+ subjects arranged by functional category.

Functional Categorya Number of Genes Differentially Regulated in Blood

HIV- only HIV+ only Both HIV- and HIV+

Up Down Up Down Up Down Total

Conserved Hypotheticals (1042)b 17 9 18 31 13 13 101 (9.7%)c

Cell Wall and Cell Processes (772) 7 4 29 10 11 6 67 (8.7)

Intermediary Metabolism & Respiration (936) 10 3 20 20 7 9 69 (7.4%)

Virulence, Detoxification, Adaptation (239) 2 0 3 8 3 4 20 (8.4%)

Lipid Metabolism (272) 0 1 9 5 4 0 19 (7.0%)

PE/PPE (168) 1 0 9 5 6 5 26 (15.5%)

Regulatory Proteins (198) 1 0 4 6 1 2 14 (7.1%)

Information Pathways (242) 0 0 7 1 2 1 11 (4.5%)

Insertion Sequences and Phages (147) 3 0 8 7 3 3 24 (16.3%)

Total 41 17 107 93 50 43 351

aFunctional categories as designated in the Tuberculist website (http://tuberculist.epfl.ch/index.html).
bNumbers in parentheses indicate total number of genes in the category in the M. tb H37Rv genome.
cPercentages in parentheses next to ‘‘Total’’ numbers indicate the percentage of genes differentially expressed within the indicated category.
doi:10.1371/journal.pone.0094939.t001

Figure 4. Percentages of genes within functional categories differentially expressed in blood from HIV- and/or HIV+ donors. (A)
Upregulated genes arranged by functional category and corresponding blood environments. (B) Down-regulated genes arranged by functional
category and corresponding blood environments. (Functional categories as designated in the Tuberculist website http://tuberculist.epfl.ch/)
doi:10.1371/journal.pone.0094939.g004
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provide strong evidence that PDIM synthesis and transport by M.

tb is promoted in blood from HIV+ donors. This suggests that M.

tb can enhance its virulence during replication in blood from

HIV+ patients.

Transcripts for Rv2947c (pks15/1), Rv2948c (fadD22), and

Rv2950c (fadD29), all of which are involved specifically in the

synthesis of PGL, were upregulated in M. tb H37Rv exclusively in

HIV+ patient blood. PGL has been associated with ‘‘hyperleth-

ality’’ of M. tb HN878 [73] and correlates with increased bacterial

burden and dissemination in the rabbit CNS infection model [74].

While the M. tb H37Rv cell-wall lacks PGL due to a deletion

mutation in the pks15 gene which disrupts the PGL-specific

synthesis pathway [75], the potential upregulation of these PGL

synthesis genes in clinical M. tb strains which harbor a fully

functional Pks15/1 could result in a more aggressive phenotype.

Besides the genes involved in PDIM/PGL synthesis, 6 pe/ppe

genes were upregulated and 5 down-regulated in bacteria

replicating in blood from both HIV- and HIV+ donors; an

additional 9 pe/ppe genes were upregulated and 5 down-regulated

in HIV+ patient blood only (TABLE 1 and Figure 4). Only one pe/

ppe gene was exclusively upregulated in HIV- donor blood. PE/

PPE proteins are found only in mycobacteria, more commonly in

pathogenic species, and several are demonstrated to be cell-wall

proteins that contribute to virulence and pathogenesis [76,77,78].

The differential regulation of this class of proteins in the human

blood, and more extensively in HIV+ patient blood, is further

indication of cell-wall remodeling in this environment that may

alter the virulence of M. tb.

Upregulation of ESX-1 and ESX-5 type VII secretion
systems and genes encoding ESAT-6-like proteins

M. tb utilizes a variety of secretion systems to export proteins

across its cell-wall including the general (Sec) secretion system, the

twin-arginine translocation (Tat) system, and multiple type VII

secretion systems (T7SS) encoded within genomic loci termed

ESX-1 to ESX-5 [79]. Only the expression of T7SSs encoded by

ESX-1 and ESX-5 were extensively affected (Figure 6A,B). Genes

within the ESX-1 locus were statistically represented among

upregulated genes in both blood environments, while genes within

the ESX-5 locus were statistically represented among upegulated

M. tb genes in blood from HIV+ patients only (Figure 6A,B).

Rv3875 (esat-6), which encodes ESAT-6, an ESX-1 substrate,

was upregulated in bacteria replicating in blood from both HIV-

and HIV+ donors; in the latter environment, esat-6 was the most

highly upregulated gene (TABLE S3). Region of difference 1

(RD1), present in M. tb but absent from all BCG vaccine strains,

encompasses the ESX-1 locus, and M. tb Desat-6, M. tb DRD1 and

BCG are similarly attenuated for cell-cell spread of M. tb in vitro

and dissemination from the lungs to other organs in vivo [42,80,81].

ESAT-6 has been demonstrated to possess cytolytic activity for

macrophages, alveolar epithelial cells, and red blood cells (RBC)

and loss of ESX-1 or the ESAT-6 protein attenuates the cytolytic

capability of M. tb [41,42,82]. Dormant M. tb down-regulate esat-6

Figure 5. Specific categories of M. tb genes affected during
growth in the blood environment. (A) DosR regulon genes (B)
Genes encoding heat shock proteins (8) and stimulators of heat shock

proteins (2) (Total 10 genes assessed). (C) Genes involved in PDIM and
PGL synthesis and transport. Venn diagrams indicate numbers of genes
differentially expressed in blood from HIV- and/or HIV+ donors with
common affected genes in the overlap. (Green indicates down-
regulated. Red indicates upregulated.) Numbers in parentheses next
to headings indicate the total number of genes in the designated
category encoded in the M. tb genome. Tables below include the
Hypergeometric Probability P-values from Fisher’s Exact testing of
differentially expressed genes represented in each category and each
blood environment (HIV- or HIV+) (significant P-values in bold), as well
as the ranges of expression fold change.
doi:10.1371/journal.pone.0094939.g005
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[83], and the presence of antibodies to ESAT-6 in retrospective

sera obtained during the months prior to progression to clinical

TB from HIV+TB+ patients confirms the in vivo expression of

ESAT-6 during reactivation of latent TB [84]. In addition to esat-

6, transcripts for ESX-1 locus-specific genes, Rv3864 (espE) and

Rv3879c (espK), were upregulated in blood from both HIV- and

HIV+ donors, and Rv3878 (espJ) was additionally upregulated in

the HIV- donor blood. Rv3874 (cfp-10) which encodes the ESAT-

6 binding partner, CFP-10, and two PE/PPE encoding genes

within the ESX-1 locus, Rv3872 (pe35) and Rv3873 (ppe68) (known

to be ESX-1 substrates in M. marinum) [85,86], were upregulated

only in HIV+ patient blood. The upregulation of ESX-1 T7SS

and its substrate, ESAT-6; especially the expression of ESAT-6 in

HIV+ patient blood, implicate a major role for this system in M. tb

adaptation to the blood environment.

Several genes from the ESX-5 locus were also upregulated by

M. tb replicating in blood from HIV+ patients (Figure 6B). Thus

while Rv1787 (ppe25) was the only ESX-5 locus gene upregulated

in blood from both HIV- and HIV+ donors, Rv1792 (esxM),

Rv1798 (eccA5), Rv1790 (ppe27) and Rv1794 were upregulated in

HIV+ patient blood exclusively. In addition, genes encoding three

known substrates of the ESX-5 T7SS, located outside any ESX

loci, were also upregulated- Rv2430c (ppe41) and Rv0442c (ppe10)

in bacteria replicating in blood from both HIV- and HIV+ donors

and Rv2431c (pe25) in HIV+ patient blood alone. ESX-5 plays an

important role in the secretion of PE/PPE proteins [87,88], and

Figure 6. Upregulation of ESX loci and esat-6-like genes. (A) Genes upregulated within ESX-1 locus. (B) Genes upregulated within ESX-5 locus.
(C) Total genes encoding ESAT-6-like proteins upregulated in the M. tb genome. (D) Genes encoding ESAT-6-like proteins which are upregulated and
located outside of ESX loci. Venn diagrams indicate numbers of genes upregulated in blood from HIV- and/or HIV+ donors. Genes that are
upregulated in both environments are in the overlap. Numbers in parentheses next to headings indicate the total number of genes in the designated
category encoded in the M. tb genome. Tables below include the Hypergeometric Probability P-values from Fisher’s Exact testing of differentially
expressed genes represented in each category and each blood environment (HIV- or HIV+) (significant P-values in bold), as well as the ranges of
expression fold change. Note: Genes located within ESX-2, ESX-3, and ESX-4 loci were not differentially expressed in blood from either HIV- or HIV+
donors.
doi:10.1371/journal.pone.0094939.g006
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the upregulation of ESX-5 is consistent with the observation that

the family of PE/PPE genes is the second most upregulated

functional category in M. tb replicating in the blood (TABLE 1 and

Figure 4A). ESX-5 function has been linked to M. tb cell-wall

integrity and virulence [88]. Importantly, deletion of a region

encompassing five genes in the ESX-5 locus, Rv1787-Rv1791

(ppe25-pe19), attenuated M. tb growth in lungs and spleen of

intravenously infected SCID mice [88], suggesting a role for ESX-

5 in the hematogenous dissemination of M. tb. Coincidently, ppe25

and ppe27, located in the above described deleted region of ESX-5,

were upregulated in the HIV+ patient blood.

ESAT-6 belongs to a family of proteins called ‘‘ESAT-6-like’’

proteins, characterized by their small size (,100 amino acids),

helix-turn-helix structure, centrally located WXG motif, and

ability to be secreted despite the lack of a classical secretion signal

[89]. In total, M. tb encodes 22 ESAT-6-like proteins. Genes for 2/

22 ESAT-6-like proteins were upregulated during growth in blood

from HIV- donors; 8/22 were upregulated in HIV+ patient blood

making this group of genes significantly represented in the latter

Figure 7. qRT-PCR validation of microarray results. Log2 fold-changes in expression of seven selected genes in M. tb replicating in blood from
HIV- donors (black dots) or from HIV+ patients (open black circles) at 96 hr compared to M. tb logarithmically growing in 7H9 broth media. (A)
Microarray results from 6 biological replicates (6 different donors) per condition (blood from HIV- or HIV+ donors) with 2 technical replicates (Cy5/Cy3
dye swap) (total 12 values per condition are shown). (B) qRT-PCR results from M. tb replicating in blood from 6 different donors per condition (HIV- or
HIV+) (total 6 values per condition are shown). Y-axis values (Log2 fold change) of $1 indicate upregulation and values #-1 indicate down-regulation.
(For qRT-PCR, numbers of transcripts were normalized to copies of 16S rRNA.) P-values indicate the statistical difference between the average log2

fold-change of a gene in blood from HIV- subjects compared to HIV+ patient blood by Mann-Whitney two-tailed test.
doi:10.1371/journal.pone.0094939.g007
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environment (Figure 6C). Genes for ten of the 22 ‘‘ESAT-6-like’’

genes, including ESAT-6 and CFP-10 (also ESAT-6-like), are

located in tandem pairs within ESX loci, and the remainder are

located elsewhere in the genome (Figure 6D). Interestingly,

transcripts for 6 of the 12 ESAT-6-like proteins that are encoded

outside the ESX loci were upregulated in M. tb replicating in

blood; 1 in blood from HIV- donors and 5 in blood from HIV+
patients, giving statistical significance to the upregulation of this

group of genes in the HIV+ blood environment (Figure 6D). Thus,

while Rv3950c (esxF) is upregulated bacteria replicating in blood

from HIV- donors, Rv1038c (esxJ), Rv1197 (esxK), Rv1198 (esxL),

Rv2347c (esxP), and Rv3620c (esxW), were upregulated exclusively

during replication in the HIV+ patient blood. It is not known if the

secretion of these ESAT-6-like proteins occurs via the ESX-1 or

ESX-5 secretion systems. Also, while ESAT-6 and CFP-10 have

been studied extensively, the functions of the other ESAT-6-like

proteins remain to be investigated. (A categorized listing of all

upregulated ESX- and ESAT-6- related genes is provided in

TABLE S4.)

Iron acquisition by M. tb in whole blood
The mechanisms for acquiring iron during iron scarcity and

storing iron during excess are carefully orchestrated in M. tb in

response to the availability of iron [90]. No genes induced in low-

iron conditions were upregulated during growth in the blood

environment when compared to M. tb growing in Middlebrook

7H9 media which is high in free iron. In contrast, transcripts for

two iron-repressed genes, Rv1169c and Rv1463, were down-

regulated in blood from both HIV- and HIV+ donors. Rv2711,

the gene encoding IdeR, a transcriptional regulatory protein

which functions as an iron-binding repressor of siderophore

biosynthesis and iron uptake, was also upregulated in blood from

HIV- donors. Furthermore, the IdeR- and iron-induced gene

Rv3841, encoding the bacterioferritin BfrB, was upregulated by

M. tb in the HIV+ patient blood. The function of BfrB is to store

iron when it is in excess to avoid iron toxicity and to make it

available during times of iron scarcity [91]. Interestingly, BfrB

elicits antibody responses in both HIV- TB and HIV+ TB

patients, indicating that a high free iron environment is

experienced by M. tb during human infection [92,93]. Together

these transcriptional alterations indicate adequate supply of iron in

the M. tb- infected blood environment. These results were

unexpected since access to free iron in the host is typically limited

by high-affinity iron chelators such as transferrin in the blood and

ferritin within host cells [94], and M. tb siderophores are known to

acquire iron from transferrin [95], suggesting that alternative

mechanisms likely contribute to iron acquisition in the blood

environment.

Another mechanism by which iron can become available to

pathogens in the blood is through hemolysis [94]. Mechanisms for

iron acquisition from heme and heme-related molecules are

known in other bacteria [96,97], and M. tb has been shown to be

capable of acquiring iron from heme by a siderophore-indepen-

dent mechanism; however, genes responsible for M. tb import of

heme iron (Rv0202c-Rv0207c) and the gene encoding the secreted

heme-binding Rv0203 were also not affected in the blood

environment [98,99,100]. esat 6 is highly upregulated in the

HIV+ patient blood, and ESAT-6 has been demonstrated to lyse

Table 2. Comparison of M. tb genes differentially expressed in HIV- donor and/or HIV+ patient whole blood with corresponding M.
tb genes in the intra-macrophage environment from two published studies.

Gene(s) HIV- blooda HIV+ blooda THP-1b mBMM (activated)c

Rv3875 (esat-6) Up Up NDE Down

Rv3083 (mymA operon) Down Down Up NDE

Rv3084 (mymA operon) NDE NDE Up NDE

Rv3085 (mymA operon) NDE NDE Up NDE

Rv3086 (mymA operon) NDE NDE Up NDE

Rv3087 (mymA operon) NDE NDE Up NDE

Rv3088 (mymA operon) NDE Down Up NDE

Rv3089 (mymA operon) NDE Down Up NDE

Rv2029c (pfkB)* NDE Down Up Up

Rv2030c* NDE Down Up Up

Rv2031c (hspX)* Down Down Up Up

Rv3873 (ppe68) NDE Up Down Down

Rv3742c NDE Down Up NDE

Rv3841 (bfrB) NDE Up Down Down

Rv1169c (lipX, pe11) Down Down Up Up

Rv2930 (fadD26) Up Up Up Up

Rv2429 (ahpD) Up Up Up Up

Rv2430c Up Up Up Up

aThis study.
bhuman differentiated THP-1cell line (THP-1)- (Fontan P et al., 2008) (110).
cactivated murine bone marrow derived macrophages (mBMM)- (Schnappinger D et al., 2003) (37).
*Belongs to DevR (DosR) regulon.
‘‘Up’’ indicates upregulated, ‘‘Down’’ indicates down-regulated, ‘‘NDE’’ indicates ‘‘not differentially expressed’’. Note: The genes listed in this table are key to the studies
cited. This TABLE is a representative but not exhaustive list.
doi:10.1371/journal.pone.0094939.t002

Transcriptional Profiling of M. tb in Human Blood

PLOS ONE | www.plosone.org 10 April 2014 | Volume 9 | Issue 4 | e94939



RBCs [82]. It is tempting to speculate that the hemolytic activity of

ESAT-6 might contribute to providing a rich source of iron to M.

tb in the blood of HIV+ patients by releasing iron-bound

hemoglobin from RBCs.

Such hemolytic activity would lead to anemia, and in fact,

anemia is a common complication of TB [101]. While iron

deficiency, anemia of inflammation, and hemoptysis are all

contributors to TB-associated anemia [102], hemolysis due to

the activity of ESAT-6 (and possibly other ESAT-6-like proteins),

could potentially also contribute to driving anemia in HIV+ TB

patients with bacteremia. Interestingly, TB-associated hemolytic

anemia is resolved by successful treatment with ATT in the

absence of transfusions, corticosteroids, or iron supplementation

indicating that TB alone was the cause of anemia [103].

Furthermore, anemia and HIV seropositivity have been identified

as strong clinical indicators of mycobacteremia [104,105]. While

M. tb bacteremia can occur in both HIV- TB and HIV+ TB

patients [106,107], it is far more common in the latter cases

[24,108]. Host sequestration of iron in the blood is an important

mechanism against bacteremia; however, due to the release of

iron, persons with hemolytic disorders are more susceptible to

bacteremia with pathogens such as Salmonella and Pneumococcus,

[94,109]. The potential role of ESAT-6 in M. tb iron acquisition

during hematogenous dissemination and TB-associated anemia in

HIV+ patients remains to be investigated.

Quantitative real-time polymerase chain reaction (qRT-
PCR) validation of microarray results

Seven M. tb genes representing different functions and varying

levels of transcriptional regulation in blood from HIV- and HIV+
donors were selected for verification of the microarray results by

qRT-PCR (Figure 7). In contrast to the microarrays, the qRT-

PCR was performed on unamplified M. tb RNA. Genes chosen for

the qRT-PCR analysis included ESX-1 genes Rv3875 (esat-6),

Rv3874 (cfp-10), as well as DevR (DosR)-regulated genes Rv3134c,

encoding a universal stress protein, and Rv1735c, of unknown

function. Randomly selected genes included Rv0692, Rv1703c

and Rv2949c. In M. tb replicating in HIV+ patient blood, the four

genes that were upregulated in the microarrays (esat-6, cfp-10,

Rv1703c and Rv2949c) were also upregulated in the qRT-PCR

analysis, and the two selected genes down-regulated during growth

in HIV+ patient blood (Rv3134c and Rv1735c) were also down-

regulated in the qRT-PCR analysis. In comparison, all of the

selected genes, with the exception of esat-6, were not differentially

expressed in blood form HIV- donors in the microarray study. Of

these, four genes (cfp-10, Rv1703c, Rv2949c, and Rv1735c) were

also not differentially expressed by qRT-PCR analysis. In blood

from the HIV- donors, esat-6 was upregulated on the microarrays;

but was not statistically significantly differentially expressed by

qRT-PCR, although the results trended towards a positive fold

change. Similarly, while Rv0692 was down-regulated in blood

from HIV- donors by qRT-PCR, the differential expression on the

microarrays only trended towards a negative fold change. This

same gene was upregulated in blood from HIV+ patients by qRT-

PCR but only trended towards upregulation by microarray.

Rv3134c was down-regulated in HIV+ patient blood by both

assays and in blood from HIV- donors by qRT-PCR but was not

identified to be differentially expressed by microarray. Therefore,

Rv3134c (in blood from HIV- donors) was the only gene whose

expression did not mirror or trend similarly in both assays. For five

M. tb genes, the statistically significant difference between

expression in blood from HIV- donors versus HIV+ patients

coincided in both microarray and qRT-PCR analysis.

Comparison of M. tb transcriptional profile during
replication in blood and in macrophages

The transcriptional profile of M. tb in the intra-macrophage

environment has been investigated extensively [37,38,110]. A

Figure 8. Effect of M. tb on HIV-1 p24 production by U1 cells. (A) Effect of gamma-irradiated, intact M. tb on p24 production by U1 cells over 5
days at increasing MOI (M. tb:cell). (B) Effect of M. tb subcellular fractions- cell wall, lysate, and culture filtrate proteins (CFP) at 20 ug/ml on U1 p24
production over 5 days. U1 culture medium alone represents the negative control in both assays. Shown are representatives of two or more
experiments.
doi:10.1371/journal.pone.0094939.g008

Table 3. Fold increase in U1 p24 production induced by M. tb
recombinant proteins.

Protein 0.5 ug/ml 1 ug/ml 2 ug/ml

ESAT-6 1.93+/20.69 20.3+/20.84 111.65+/235.7

CFP-10 0.69+/20.084 1.06+/20.61 0.44+/20.40

MS 1.41+/20.01 1.53+/20.007 1.92+/21.0

Numbers indicate the fold change in p24 levels in supernatants of protein-
treated cells at day 5 of incubation compared to p24 levels produced by U1
cells in wells with medium alone. Means and standard deviations from two
independent experiments are shown.
doi:10.1371/journal.pone.0094939.t003
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comparison of the key transcriptional adaptations of M. tb in the

macrophage (human differentiated monocytic cell-line THP-1

(THP-1) and activated murine bone marrow-derived macrophages

(mBMM) [37,110]), and in the blood reveals distinct responses to

the two environments (TABLE 2). While expression of some genes

differ in the two intra-macrophage environments, a number of M.

tb genes were upregulated in both THP-1 and mBMM; including

Rv0080, Rv0081, Rv1169c (pe11), Rv2028c, Rv2029c (pfkB),

Rv2030c, Rv2031c (hspX), Rv2032 (acg), Rv2429 (ahpD), Rv2430c

(ppe41), Rv2626c, Rv2930 (fadD26), Rv3133c, Rv3139 (fadE24),

and Rv3140 (fadE23) [37,110]. Of these, transcripts for Rv2930

(fadD26) and Rv2429 (ahpD) were also upregulated in blood from

both HIV- and HIV+ donors. Interestingly, Rv2430c (ppe41),

upregulated in both blood and intra-macrophage environments, is

an immunodominant B-cell inducer in patients with active TB,

primary and reactivated, as well as EPTB [111], and is a substrate

of the ESX-5 T7SS [88]. In contrast, Rv2031c (hspX) and

Rv1169c (pe11), were down-regulated in blood from both HIV-

and HIV+ donors, and Rv2029c (pfkB), and Rv2030c were

additionally down-regulated in HIV+ patient blood. The remain-

ing M. tb genes commonly upregulated in THP-1 and mBMM

were not differentially expressed by M. tb in the blood. Among M.

tb genes upregulated in the THP-1, but not affected in mBMM, is

the mymA operon (Rv3083-Rv3089). Rv3083 was down-regulated

in blood from both HIV- and HIV+ donors. Rv3088 and Rv3089

(fadD13) were additionally down-regulated in the HIV+ patient

blood. Rv3742c, a gene of unknown function, upregulated in

THP-1 but not affected in mBMM, was also down-regulated

exclusively in the HIV+ patient blood. Importantly, esat-6,

upregulated during replication in blood from both HIV- and

HIV+ donors, most strongly in the latter, was unaffected in THP-1

and down-regulated in mBMM.

The intra-macrophage is a low iron environment [60], thus

Rv3841 (bfrB), was down-regulated in both THP-1 and mBMM;

as mentioned above bfrB was upregulated in the HIV+ patient

blood. Also down-regulated in THP-1 and mBMM, Rv3873

(ppe68) of the ESX-1 locus is upregulated in the HIV+ patient

blood. DevR (DosR) regulon transcriptional responses in blood

and macrophages were conspicuously different; 3/48 and 21/48

genes were down-regulated during replication in blood from HIV-

and HIV+ donors, respectively (Figure 5A), while none were

down-regulated in THP-1 or mBMM, and in fact, 9 DevR (DosR)

regulon genes were upregulated in both THP-1 and mBMM and

an additional 32 were upregulated in the latter [37,110] (TABLE

S5 and Figure S5). The distinct transcriptional changes adopted by

M. tb replicating in the blood versus the macrophage indicates that

during hematogenous phase of infection, macrophages are not an

exclusive niche for M. tb.

ESAT-6 stimulates HIV replication in U1 cells
M. tb:HIV co-infection creates a synergistic environment which

drives and accelerates both infections [112,113]. HIV viral load

during the acute phase of TB is reported to increase 5–160 fold in

plasma [114], and viral burden in bronchoalveolar lavage fluid

(BAL) from TB-involved lung is higher than in BAL from

uninvolved lung of TB+ HIV+ patients or from TB- HIV+
patients indicating a local effect of M. tb on viral burden [115].

Additionally, blood monocytes from patients with active TB are

more susceptible to productive HIV-infection [116], and M. tb

PPD induces HIV replication in the U1 cell line, a model of HIV

latency containing HIV-1 proviruses [117]. Cell culture superna-

tants from U1 cells incubated with intact gamma-irradiated M. tb

H37Rv exhibited p24 production which increased in a M. tb dose-

dependent manner (Figure 8A). When U1 cells were stimulated

with subcellular fractions of M. tb, the cell-wall fraction dramat-

ically induced HIV replication while neither cell lysate nor culture

filtrate protein fractions induced appreciable p24 production

(Fig 8B). Purified recombinant ESAT-6 and two other cell-wall

proteins, CFP-10 and malate synthase (MS, Rv1837c), were tested

for their ability to stimulate HIV replication in U1 cells (TABLE 3);

only ESAT-6 induced HIV replication (.100 fold at 2 ug/ml; a

concentration not cytotoxic to U1 cells, data not shown). Neither

CFP10 nor MS induced significant HIV replication even at

concentrations as high as 10 ug/ml (data not shown). Preliminary

experiments with similar concentrations of the surface-exposed

and secreted antigens ERP, MPT51, and Ag85c (Rv3810,

Rv3803c, and Rv0129c, respectively) also failed to induce p24

production by U1 cells (data not shown). ESAT-6 is present in the

cell-wall, cell-membrane and the culture filtrates of M. tb

[118,119,120,121]. The inability of the culture filtrate fraction to

induce p24 production in our experiments (Figure 8B) is likely

because the CSU/BEI culture filtrate protein preparation method

excludes proteins ,10 kDa [122,123] and has little, if any ESAT-

6 (,6 kDa). These results specifically implicate ESAT-6 in the

synergistic interplay between M. tb and HIV during co-infection,

with an HIV+ environment stimulating the transcription of esat-6

and thus perhaps increasing M. tb virulence, and M. tb ESAT-6, in

turn, stimulating HIV replication in HIV-infected macrophages.

The mechanism(s) by which ESAT-6 drives HIV replication

merits further investigation.

Concluding Remarks
Hematogenous dissemination of M. tb occurs during the natural

course of establishment of latent infection leading to the systemic

seeding of the host organs [1,2,3,4,5,8]. Hematogenous presence

of M. tb is also frequently observed during both primary and

reactivation pulmonary and extrapulmonary TB, and in dissem-

inated and miliary TB. The ability of M. tb to adapt to the

physiological and immunological microenvironments it encounters

enables avoidance of the host anti-bacterial mechanisms and

transition between latent and active states. While the adaptation to

important environments such as the lungs, macrophages and the

granuloma have been investigated, scant information is available

regarding M. tb adaptation to the hematogenous environment.

HIV+ patients are at a significantly enhanced risk for active TB

infection and progression, for manifestation of extrapulmonary

and systemic forms of TB [10,16,17,18,19,20], and for M. tb

bacteremia [24,25,108,124]. The enhanced risk for TB arises

independently of CD4+ T cell numbers, viral load or antiretroviral

treatment, although the degree of risk correlates with immune

dysfunction [11,12,13,15,125,126]. Interestingly, studies with

HIV+ TB patients prior to and through the institution of Highly

Active Antiretroviral Therapy (HAART) showed that HAART

decreases the risk for pulmonary TB more than the risk for EPTB

[127], suggesting that treatment may have lower ability to

attenuate systemic dissemination. These cumulative observations

suggest that during residence in blood, M. tb itself alters its

phenotype to drive active TB, and more so in the blood from

HIV+ patients.

To our knowledge, this is the first investigation that specifically

delineates the ‘‘blood specific transcriptome’’ of M. tb and provides

insight into the bacterial mechanisms that likely drive active TB

and disseminated forms of TB. Thus, M. tb is capable of replicating

in and adapting to the blood of both HIV- healthy donors and

HIV+ patients (Figures 1 and 2). M. tb in the blood environment

undergoes a transcriptional adaptation indicative of a more

aggressive phenotype as demonstrated by the adaptation to an

active rather than dormant state, potential dampening of immune
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recognition by down-regulating the heat shock response, cell-wall

remodeling consistent with increased virulence, and upregulation

of ESX-1 and ESX-5 secretion systems and substrates associated

with virulence. Interestingly, the numbers of genes affected in each

of these categories were higher in M. tb replicating in blood from

HIV+ patients than in blood from the HIV- donors (Figures 5 and

6). We interpret this effect to be attributable to M. tb-adaptive

rather than HIV-driven mechanisms since the viral loads in nearly

all HIV+ blood patients were undetectable and the CD4+ T cell

counts in four of the six patients whose blood was used in the

microarray analysis were in the normal range (TABLE S1).

Importantly, the HIV+ patients included in this study were all

receiving HAART. It is likely that in blood from HIV+ HAART-

naı̈ve individuals the M. tb transcriptional adaptations might be

even more striking, and these studies are planned.

Another striking finding in this study was the dramatic

upregulation of the gene encoding the virulence factor, ESAT-6

during M. tb replication in both blood environments; esat6, was the

most upregulated of all genes in M. tb growing in blood from

HIV+ patients (Table S3). ESAT-6 is a cytolytic virulence factor

which participates in the bacterial crossing of the alveolar barrier

[41], and also has hemolytic activity that may facilitate M. tb access

to iron during the hematogenous phase of infection. Our

preliminary studies with recombinant purified ESAT-6 suggest

that it may also play a specific role in enhancing HIV replication

in the infected macrophages thus contributing to the accelerated

progression of HIV-infection to AIDS.

The whole blood model has been used to study the transcrip-

tional adaptation of other human bacterial pathogens during

bacteremia [27,28,29,30]. In contrast to studies with isolated cell-

types, the whole blood represents a complete environmental

context encountered in vivo during hematogenous phases of

infection. M. tb-infected neutrophils produce cytokines that can

activate macrophages, and dendritic cells, NK cells, and cd T cells

are involved in the innate immune responses to M. tb

[128,129,130,131,132]. Thus, the macrophage model may pro-

vide insufficient insight into the M. tb mechanisms that support

infection and disease progression. The whole blood model includes

all the cell types that participate in immune responses, including

macrophages, different T cell populations (CD4+, CD8+, TH17,

T regs), dendritic cells, monocytes, neutrophils (and other

granulocytes) etc as well as the resulting complex milieu of

cytokines and chemokines [133,134]. In fact, circulating cytokine

levels and other biomarkers have been shown to correlate with TB

disease and response to treatment [135,136], and the whole blood

model has been used to assay the ability of drugs to kill M. tb [137].

The comparison of the significant findings in this study with those

from published microarray studies of M. tb within macrophages

[37,110] highlights the differential responses of M. tb in the whole

blood environment and within isolated cells (Table 2).

The ability of M. tb to grow in whole blood ex vivo has been

suggested to correlate with virulence of the infecting M. tb strain

[138]. Our results suggest that M. tb alters its phenotype in the

hematogenous environment and adapts transcriptionally by

enhancing its virulence potential. Our studies also demonstrate

that M. tb can distinguish between the blood environments of

healthy, immunocompetent donors and of HIV+ patients. While

the current studies provide a snapshot of the transcriptional

adaptation in blood at a single time point in blood from HAART-

treated HIV+ patients, it is likely that M. tb adapts to the

continuously changing immunological environment in HIV+
patients to exploit the optimal opportunities for its growth, and

time spent in the hematogenous environment may also affect the

degree of adaptation. The results of this study will drive future

investigations aimed at understanding the pathogenesis of M. tb

and in the identification of diagnostic biomarkers and therapeutic

targets for active TB, M. tb bacteremia, and TB in HIV+
individuals.

Materials and Methods

Ethics Statement
Peripheral whole blood was collected from PPD-, healthy, HIV-

volunteers working at the Veterans Affairs Medical Center

(VAMC) with written informed consent signed by the participants

(NYU School of Medicine-IRB approved study #07-848; Board A

(IRB#1), FWA 00004952. Whole blood from de-identified HIV+
patients that otherwise would have been discarded after analysis

for CD4+ T cell counts and viral load assessment (NYUSoM, IRB

approved study #7279; Board B (IRB#2), FWA 00004952) was

also used in this study.

Human Subjects
Peripheral blood from 13 PPD-negative, HIV- healthy volun-

teers who had not received BCG vaccination and 17 HIV+
patients on HAART undergoing routine monitoring for viral loads

and CD4+T cells were obtained. The PPD status of the HIV+
donors was presumed to be PPD-negative since all were US born.

The details of CD4+ T cell count and viral load for each HIV+
patient included in these studies (CFU, Microarray, or qRT-PCR)

are listed in TABLE S1.

Whole blood M. tb culture
M. tb H37Rv was cultured in whole blood as described [139].

Briefly, whole blood was diluted 1:1 with RPMI-1640 supple-

mented with 1% L-glutamine and 20 IU/ml heparin (Sigma). Six

aliquots of diluted blood (0.9 ml) from each subject were

inoculated with 0.1 ml (106 CFU) of single cell suspensions of

log phase M. tb H37Rv grown in Middlebrook 7H9 media in 7 ml

endotoxin-free Sterilin non-pyrogenic tubes (Dynalab corporation)

and incubated at 37uC shaking at 20 rpm. For CFU determina-

tion, at 2 hr and 96 hr, three inoculated blood samples per subject

were treated with 0.1% triton X 100 (Sigma) in water containing

6M urea (Sigma) for 10 min at room temperature to lyse blood

cells. Lysed infected blood samples were centrifuged at 20006g for

15 min to collect the bacteria, and the pellets were washed once

with the same buffer and resuspended in MiddleBrook 7H9 media

with 0.05% Tween 80. For CFU determination, serial dilutions of

these suspensions were plated onto MiddleBrook 7H11 agar plates

and incubated at 37uC. After 14-21 days CFU were counted. CFU

counts from triplicate infections per time point were averaged.

Isolation of M. tb from blood cultures and extraction of
M. tb RNA

Ten-20 ml diluted whole blood was inoculated with M. tb

H37Rv (as described above) in 100 or 150 ml Sterilin endotoxin-

free containers (Dynalab corporation) and incubated at 37uC. At

96 hr post inoculation, blood cells were lysed, the bacteria pelleted

by centrifugation and the bacterial pellets were immediately

resuspended in GTC solution (4 M guanidium thiocynate, 0.5%

sodium N-lauryl sarcosine, 25 mM tri-sodium citrate pH 7.0,

0.1 M 2-mercaptoethanol and 0.5% tween 80) to lyse any

remaining eukaryotic cells. After washing once each with GTC

solution and 0.5% tween 80, the bacterial pellets were each

resuspended in 1 ml TRI reagent containing polyacrylamide

carrier (Molecular Research Center). For RNA isolation, the

bacilli were disrupted in a bead beater with autoclave-sterilized

0.1 mm zirconia beads (Biospec) and resulting lysates used to
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extract total RNA as described [140]. The RNA preparations were

cleaned by RNeasy columns (Qiagen) after treatment with Turbo

DNase (Ambion). RNA quality and quantity was determined using

an Agilent 2100 Bioanalyzer.

Log phase M. tb grown in 7H9 broth were treated similarly to

obtain reference RNA. Ten ml Middlebrook 7H9 media was

inoculated with a 0.5 ml frozen aliquot of bacteria (OD600 = 0.7

at time of storage) yielding a starting culture of OD600 ,0.035.

The culture was incubated at 37uC with shaking (110 rpm) for 7–9

days and harvested at an OD600 of 0.7–0.9 (mid to late log phase).

Bacteria similarly cultured enter stationary phase at OD600 ,1.4

to 1.7.

DNA Microarrays
RNA from M. tb cultured in blood from 6 PPD- HIV- healthy

donors and 6 HIV+ patients was used for the DNA microarray

studies with RNA from M. tb grown to log phase in Middlebrook

7H9 broth as the reference (see TABLE S1 for HIV+ donor

details). To ensure adequate amounts of RNA for the microarray

study, an RNA amplification strategy was used on similar amounts

of all M. tb RNA samples [141,142]. Briefly, each RNA sample

(100 ng) was amplified using MessageAmp II-Bacteria RNA

amplification kit (Ambion). Since this method produces aRNA in

antisense orientation, the synthesis of cDNA from aRNA and

fluorescent labeling of cDNA with Cy3 or Cy5 was accomplished

by first performing reverse transcriptase (RT) reaction with

Superscript II RT followed by labeling with Klenow fragment

using Bioprime Kit (Invitrogen) following a published method

[141]. This amplification method has been used to study

differential gene expression in several organisms [141], including

M. tb obtained from sputum samples of TB patients [142]. We first

confirmed that the expression profiles of amplified M. tb RNA

(aRNA) are similar to those of unamplified RNA, and the results

are consistent with earlier reported studies [143] (Figure S6). The

M. tb microarray chips containing 70-mer oligonucleotides

representing all open reading frames annotated in the M. tb

H37Rv genome sequence were obtained from the Center for

Applied Genomics (Public Health Research Institute; Newark, NJ).

Labeled cDNA from aRNA of log phase M. tb grown in 7H9 broth

was used as the reference control on each chip. For hybridization,

labeled cDNA probes generated from aRNA obtained from M. tb

grown in each blood sample was mixed with the labeled reference

cDNA probe prior to purification with Microcon YM10 filter

(Millipore). For each M. tb-infected blood sample, the M. tb arrays

were hybridized over night with the mixed labeled cDNA probes

in duplicate to include a Cy3/Cy5 dye swap [110]. The

microarrays were scanned and processed with an Axon 4000B

scanner and GenePix Pro 6.1 software, respectively. The chips

were normalized by the print-tip Lowess method, and the Cy5/

Cy3 intensity ratio was determined for each gene [144]. The

intensity ratio data obtained from M. tb grown in blood from all

subjects in the HIV- or HIV+ group was used to perform one class

Significance Analysis of Microarrays (SAM) with Multiarray

Viewer Software on the TMEV website for determination of

differentially expressed genes of M. tb grown in whole blood

compared to 7H9 broth grown M. tb [145]. Among genes

identified by SAM, only genes differentially expressed in the blood

environments compared to 7H9 broth that showed a $2 fold

change at a false discovery rate of ,2% were considered

significantly differentially expressed. Data were deposited in Gene

Expression Omnibus repository (Accession Number: GSE49760).

To contrast the M. tb differential gene expression in the two blood

groups (HIV+ vs HIV-) (Figure 3), HIV+/7H9 log ratios and

HIV-/7H9 log ratios (data obtained above) were directly

compared by two class unpaired SAM analysis, and a $2 fold

difference (HIV+ vs HIV-) at a false discovery rate of ,2% were

considered significantly differentially expressed.

Statistical Analysis
Hierarchical clustering of total upregulated and total down-

regulated genes was performed using TMEV MeV_4_9_0

software with the distance threshold set at 0.75. Fisher’s Exact

Test (Microsoft Fisher’s Exact Test Calculator) was applied to the

data to determine the hypergeometric probability of enrichment

amongst functional catergories of interest.

Quantitative RT-PCR
To validate the differential expression of M. tb genes identified

in the microarray, expression of seven selected genes was

determined in unamplified RNA from M. tb grown in blood from

6 HIV- and 6 HIV+ subjects (TABLE S1) by qRT-PCR [41]. M.

tb gene specific primers were designed using Primer3 software

(TABLE S6). Briefly, M. tb RNA was subjected to synthesis of first-

strand cDNA using Superscript II RNase H- reverse transcriptase

(RT). The real-time PCR was performed using iQ SYBR Green

supermix, primers, and cDNA in a MyiQ2 two color Real Time

PCR Detection System (Bio-Rad). For each RNA, a reaction

without RT was performed as a negative control. For quantitation,

a standard curve was generated for each gene using a serial

dilution of M. tb genomic DNA and respective primers. Copies of

16S rRNA was used to normalize the transcript levels of the

respective genes. The ratio of normalized copies of each selected

gene from M. tb grown in blood from HIV- or HIV+ subjects to

normalized copies in 7H9 broth-grown M. tb was calculated to

determine the fold change in expression of that gene in HIV- or

HIV+ blood compared to reference 7H9 broth. Prior to

quantitation, the specificities of PCR products were verified by

amplification of each gene target using respective primers with M.

tb H37Rv genomic DNA and cDNA obtained from M. tb RNA

isolated from infected blood as templates and sequencing of

amplified products. Mann-Whitney two-tailed test using Graph-

Pad prism software was used for statistical analysis, and P-

value,0.05 was considered statistically significant.

Culture of U1 cells
U1 cell line which is a chronically infected clone from the parent

promonocyte cell line, U937, and contains two HIV-1 pro-viruses

integrated into the genome, was obtained from the NIH AIDS

Research and Reference Reagent Program (Rockville, MD). The

U1 cells were grown in RPMI 1640 medium (Cambrex, MD)

supplemented with 10% of fetal calf serum, 2 mM L-glutamine

and 1% penicillin /streptomycin at 37uC in a 5% CO2 incubator.

Cells were diluted to 26105/ml and passaged every 5 days. Low

level of p24 (,100–400 pg/ml) was detected at day 5 from the

supernatant of untreated U1 cells. Cell viability was monitored by

trypan blue exclusion and more than 95% cells were viable on day

5.

Treatment of U1 cells with c-irradiated M. tb
U1 cells were washed twice with RPMI. One ml of U1 cell

suspension (26105 cells) was suspended in wells of a 24-well plate

and duplicate wells incubated with c-irradiated M. tb H37Rv at

multiplicities of infection (MOI) (bacteria:cell) ranging from 8:1 to

80:1. The plates were incubated at 37uC in a 5% CO2 incubator,

and 100 ul/well supernatant removed daily for 5 days and

replaced by 100 ul of fresh medium to maintain constant volume.

The collected viral supernatants were mixed with 100 ul of PBS
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with 0.05% Tween 20 (PBST) containing 2% Triton X 100 and

frozen until tested by p24 ELISA described below.

Treatment of U1 cells with M. tb subcellular fractions
Subcellular fractions of H37Rv (total cell lysate, cell-wall, and

culture filtrate proteins (CFP) were obtained from the NIH/

NIAID TB Research Materials and Vaccine Testing Contract,

Colorado State University (CSU), Fort Collins (currently provided

by (BEI Resources: www.beiresources.org) and were incubated in

duplicate with U1 cells (26105 cells in 1 ml) at final concentrations

of 4 ug/ml, 20 ug/ml, and 100 ug/ml in cell culture medium at

37uC in 5% CO2 for five days (representative data with cell

fraction concentrations of 20 ug/ml is shown). Incubation of cells

with cell culture medium alone was used as a negative control.

Cells were allowed to settle and 100 ul supernatants of treated and

untreated cells were collected daily for 5 days and subjected to p24

ELISA as described below.

Treatment of U1 cells with purified M. tb proteins
Purified M. tb proteins (ESAT-6, CFP-10, and malate synthase)

were also obtained from the above source at CSU. U1 cells were

incubated with increasing concentrations (0, 0.5, 1, and 2 mg/ml)

of the 3 purified proteins for 5 days at 37uC in 5% CO2. On day 5,

cells were allowed to settle and 100 ul supernatants of treated and

untreated cells were collected. P24 was measured by ELISA. Fold

increase in p24 production was determined by dividing the

amount of p24 detected in the supernatant of protein-treated cells

with the amount of p24 detected in the supernatant of untreated

cells on day 5 of incubation.

Measurement of p24 production by U1 cells
The concentration of p24 in the supernatants of U1 cell cultures

was measured by an in-house ELISA described previously [146].

Briefly, ELISA wells were coated with 100 ul of human MAb 91-5

(anti-HIV p24 antibody) [147] at 0.5 mg/ml at 4uC overnight.

The wells were washed 4 times with PBS- 0.05% Tween 20

(PBST) and blocked with 0.2 ml of 5% bovine serum albumin

(BSA) in PBST (BSA-PBST) for 6 h at 37uC. After washing the

wells again 4 times, 100 ul/well of each supernatant was added.

To generate a standard curve for quantitation of p24 in the test

samples, recombinant p24 from HIV-1SF2 expressed in yeast

(Chiron Corp., Emeryville, CA) was reconstituted to contain

250 pg/ml; 100 ul/well of serial two-fold dilutions (250 to

15.6 pg/ml) of each concentration of p24 was added in duplicate

wells in the ELISA plate. The plates were incubated at 4uC
overnight and then washed 4 times with PBST. One hundred ul of

biotinylated human anti-p24 MAb 241-D (which recognizes a

different p24 epitope from that recognized by MAb 91-5)

[147,148] diluted 1:10,000 in PBST-1%BSA was added to each

well and ELISA plate incubated at 37uC for 2.5 hr. After

subsequent washing, the wells were incubated with streptavidin

alkaline phosphatase 1:1000 (Invitrogen, Carlsbad, CA) for 1 hr at

37uC. Color was developed with an ELISA Amplification System

(Invitrogen), and plates were read at 490 nm. The amount of p24

was determined by extrapolating the optical density value of the

test sample supernatant on the curve plotted from the values

obtained with the recombinant p24. Every experiment was

repeated at least twice.

Supporting Information

Figure S1 M. tb genes differentially expressed in blood
from HIV- donors only. Heat maps of (A) upregulated M. tb

genes and (B) down-regulated M. tb genes. Results are shown from

M. tb grown in blood from 6 HIV- donors (1-6) and 6 HIV+
patients (7-12) with dye flip.

(TIF)

Figure S2 M. tb genes differentially expressed in blood
from HIV+ patients only. Heat maps of (A) upregulated M. tb

genes and (B) down-regulated M. tb genes. Results are shown from

M. tb grown in blood from 6 HIV- donors (1-6) and 6 HIV+
patients (7-12) with dye flip.

(TIF)

Figure S3 M. tb genes differentially expressed in blood
from both HIV- and HIV+ subjects. Heat maps of (A)

upregulated M. tb genes and (B) down-regulated M. tb genes.

Results are shown from M. tb grown in blood from 6 HIV- donors

(1-6) and 6 HIV+ patients (7-12) with dye flip.

(TIF)

Figure S4 Unsupervised Hierarchical Clustergrams of
M. tb genes differentially expressed in blood. Cluster-

grams of (A) upregulated M. tb genes and (B) down-regulated M. tb

genes from M. tb grown in blood from 6 HIV- donors (1-6) and 6

HIV+ patients (7-12) with dye flip. Distance threshold of

hierarchical tree was set to 0.75 producing 10 clusters among

upregulated genes and 6 clusters among down-regulated genes.

Key insert defines numbers in parenthesis (Black- total # genes in

cluster; Blue- # of cluster genes affected in HIV- donor blood

only, Pink- # of cluster genes affected in HIV+ patient blood only,

Orange- # of cluster genes affected in blood from both HIV- and

HIV+ donors.

(TIF)

Figure S5 Differential expression of DevR (DosR)
regulon genes in blood and macrophages. Venn diagrams

of numbers of DevR (DosR) regulon genes (A) down-regulated in

M. tb replicating in blood from HIV- and/or HIV+ subjects with

commonly down-regulated genes in the overlap (this study) and (B)

upregulated in M. tb isolated from THP-1 and/or activated

mBMM macrophages with commonly upregulated genes in the

overlap (Fontan P et al., 2008; Schnappinger D et al., 2003)

[110,37]. Note: No DevR (DosR) regulon genes were upregulated

in either blood environment nor were any down-regulated in

either macrophage environment.

(TIF)

Figure S6 Validation of RNA Amplification Method. (A)

Images of representative M. tb chips scanned after hybridization

with a mixture of Cy3 and Cy5 labeled cDNA probe derived from

unamplified and amplified RNA (aRNA) from M. tb grown in

HIV- blood and 7H9 broth (reference RNA). (B) Comparison of

differentially expressed ($2-fold) M. tb gene profiles in blood with

reference to 7H9 broth obtained with unamplified RNA and

aRNA; 257/617 (42%) genes identified to be differentially

expressed by unamplified RNA were also identified by aRNA.

(C) Heat map comparing highly differentially expressed ($4-fold)

M. tb gene profiles in blood with reference to 7H9 broth obtained

with unamplified and aRNA (three technical replicates including

one dye flip); 58/82 (71%) differentially expressed genes identified

by unamplified RNA were also identified by aRNA.

(TIF)

Table S1 Clinical details of HIV+ blood donors and
corresponding experiments.
(DOCX)

Table S2 M. tb genes differentially expressed in blood
from HIV- donors.
(PDF)
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Table S3 M. tb genes differentially expressed in blood
from HIV+ patients.

(PDF)

Table S4 M. tb ESX loci-related genes and genes
encoding ESAT-6-like proteins outside ESX loci upregu-
lated in blood from HIV- and/or HIV+ subjects.

(DOCX)

Table S5 Distribution of differentially expressed DevR
(DosR)-regulon genes in blood from HIV- and/or HIV+
subjects in this study and in two published intra-
macrophage microarray studies.

(DOCX)

Table S6 Primers used for qRT-PCR.

(DOCX)
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